2 research outputs found

    Better than a lens -- Increasing the signal-to-noise ratio through pupil splitting

    Full text link
    Lenses are designed to fulfill Fermats principle such that all light interferes constructively in its focus, guaranteeing its maximum concentration. It can be shown that imaging via an unmodified full pupil yields the maximum transfer strength for all spatial frequencies transferable by the system. Seemingly also the signal-to-noise ratio (SNR) is optimal. The achievable SNR at a given photon budget is critical especially if that budget is strictly limited as in the case of fluorescence microscopy. In this work we propose a general method which achieves a better SNR for high spatial frequency information of an optical imaging system, without the need to capture more photons. This is achieved by splitting the pupil of an incoherent imaging system such that two (or more) sub-images are simultaneously acquired and computationally recombined. We compare the theoretical performance of split pupil imaging to the non-split scenario and implement the splitting using a tilted elliptical mirror placed at the back-focal-plane (BFP) of a fluorescence widefield microscope

    cellSTORM - Cost-effective Super-Resolution on a Cellphone using dSTORM

    Get PDF
    Expensive scientific camera hardware is amongst the main cost factors in modern, high-performance microscopes. Recent technological advantages have, however, yielded consumer-grade camera devices that can provide surprisingly good performance. The camera sensors of smartphones in particular have benefited of this development. Combined with computing power and due to their ubiquity, smartphones provide a fantastic opportunity for "imaging on a budget". Here we show that a consumer cellphone is capable even of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we investigated an approach by a trained image-to-image generative adversarial network (GAN). This not only serves as a versatile technique to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance, but also allows processing directly on the smartphone. We believe that "cellSTORM" paves the way for affordable super-resolution microscopy suitable for research and education, expanding access to cutting edge research to a large community
    corecore